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Нано-электростанции 
в живой клетке 

• Дыхание

• Митохондрии

• Производство энергии 
АТФ из энергии солнечного света
• Хлоропласты (зеленые растения и водоросли)
и хроматофоры (бактерии)



Производство энергии осуществляется в 
субклеточных системах

Митохондрия



Хлоропласт. 



Иерархия 
фотосинте-
тических

процессов

ФОТОСИНТЕЗ



Структура мультиферментных 
комплексов



Z- схема фотосинтеза





уравнения для вероятностей
состояний 

Начальные условия
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Описание состояний комплекса 
из двух компонентов C1C2
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Взаимодействие 
комплекса с 
мобильным 

переносчиком D



Комплекс из трех переносчиков
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Процессы, описанные в обобщенной кинетической модели



Фотосистема 2
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Кинетические уравнения для вероятностей состояний ФСII имеют вид:



Фотосистема 1

Фд

НАДФН

[P0
700 A0]

(P1I)
[P0

700 A–] (P3I)

[P+
700 A0] (P2I)

[P+
700 A–] (P4I)

k’out1

k01-׳

k01׳

k’–out1

k׳-in1
k׳in1kin1 k׳–in1

k’out1

k’–out1

ФНР

НАДФ+kНАДФН

Ферредоксин 
(акцептор электронов)

Пул PQ

донор электронов

kin1

kout1

Фотосистема 1

kcalvin

1
1 1 01 1 1 2 1 3 01 4( )I

I out in in I out I I

dP
P k k k k P k P k P

dt
− − −
′ ′ ′ ′ ′ ′= − + + + + + ⋅

2
1 1 1 2 1 4

I

in I in I out I

dP
k P k P k P

dt
−
′ ′ ′= − +

3
1 1 1 1 3 1 4( ) ,I

out I out in I in I

dP
k P k k P k P

dt
− −
′ ′ ′ ′= − + +

4
01 1 1 2 1 3 1 1 01 4

( )I

I out I in I out in I

dP
k P k P k P k k k P

dt
− − −
′ ′ ′ ′ ′= + + − + +

(23.5)



Взаимодействие двух фотосистем с 
участием подвижных переносчиков
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Изучение влияния мутаций

эксперимент модель

у crr-мутантов подавлен только NDH-зависимый электронный транспорт, а у 
pgr5- мутантов подавлен как циклический Fd-зависимый электронный 
транспорт, так и электронный поток в акцепторной части ФСI. 

Диплом Максима Патрина. Каф. биофизики

PGR proton gradient regulation
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Процессы, описанные в обобщенной кинетической модели



Кинетическая 
кривая

нарастающего 
участка 
индукции 

флуоресценции 





Комплекс Фотосистемы 2. 
Подробности.





Моделирование отклика системы  на короткую 
вспышку

Belyaeva, Renger et al., Phot.Res. 
2008-2016







Схема Митчела

функционирования 
цитохромного

комплекса.

Сопряжение 
электронного 
транспорта и 

трансмембранного 
переноса протонов
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Комплекс 
Фото-

реакционного 
центра 

Фотосистемы I
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(PSI5)P700  - the reaction center 
chlorophyll, 

FeS  - the entire acceptor 
complex; 

Fd, ferredoxin; 
Pc, plastocyanin; 

Scheme of 
PS1 

Complex 
States

superscripts mark 
the reduced (r) 
and oxidized (ox) states. 



Схема процессов в ФС1 и циклических 
потоков вокруг ФС1



Experiment

Model

Red light (650 нм) Intensity

600 (100%), 60 (10%) and 6 

(1%) W⋅м–2. 

Strasser R.J., Srivastava A., 

Govindgee // Photochemistry 

and Photobiology. 1995. V.61. 

P.32-42 44.

Light constants:

1500, 150 и 15 с-1 .

General kinetic model. 
Fluorescence induction curves 

simulation



Kinetic curves of variables of the model



Одновременное фитирование данных флуоресценции и кинетики 
редокс превращений Р700 - фотоактивного пингмента ФС1

Belyaeva, 
Bulychev, 
Riznichenko, 
Rubin. Phot. Res. 
2016



Кинетические Монте Карло модели

0.01 0.1 1 10 100 1000
Time, ms

P700 redox transformations

эксперимент

Maslakov, Antal et al. Biophys. 2015; Antal et al., Photosyn. Res. 2018

3 millions of Photosynthetic Chains
As in a real micro algae cell

модель



Симуляция воздействия ингибиторов

heat





Недостатки кинетических моделей

• Трудности в описании пространственной гетерогенности
• Несвободная диффузия подвижных переносчиков
• Невозможность проследить судьбу отдельного участника процесса



Изображения мембраны тилакоида

Сейчас не удается отобразить рисунок.

Вид участка тилакоидной мембраны в электронный 
микроскоп. Размер изображения 4 мкм. Грана –
структурная единица тилакоида, имеет форму диска 
диаметром 500 нм и толщиной 15-20 нм 

Атомная силовая микроскопия



Сцена прямой 

модели

Метод прямого многочастичного моделирования

Коваленко и др., 2003, 2007,2008, 2009; Kovalenko et al., 2006; Абатурова и др., 2008; 

Дьяконова и др., 2008; 2016; Устинин и др.,  2013; Хрущев и др. 2015; Ризниченко и др., 
2009; 2017; Rubin, Riznichenko in “Photosynthesis in Silico” Springer, 2009; math. 
Biophysics, Springer , 2014



Передача электрона происходит после стыковки 

переносчика с комплексом. Стыковка происходит с 

некоторой вероятностью p, если переносчик подходит к 

комплексу на расстояние, меньшее эффективного 

радиуса r.

Броуновская динамика 
(Brownian dynamics) 

• .

• Здесь f(t) – случайная сила, распределенная по Гауссу с нулевым 
средним и дисперсией, равной 2kTξ, k – постоянная Больцмана, T –
температура, ξ – коэффициент трения в среде, вычисляемый (в 
предположении о сферичности частицы) по формуле ,

• где η – вязкость среды, a – радиус частицы

Параметры прямой модели:
Эффективный радиус взаимодействия
Вероятность докинга

( )
dx

f t
dt

ξ =

6 aξ πη=

Для каждой частицы решается уравнение:



Модельная траектория молекулы PQ в 
мембране с встроенными ФС1, ФС 2 и 

цитохромными комплексами 







Рс

M = 10.5 КДа
a=21 Å, b=14 Å

Molecular mass
Axes of ellipsoids of rotation

Cyt f

M = 27.9 КДа 
a=47 Å, b=17 Å

Approximation of cyt f and Рс by ellipsoids 
of rotation

To simulate the diffusion at the distance more than 35 Å
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Equipotential surfaces calculated according to 
Poisson-Boltzmann equations

To calculate interactions at the distance less than 35Å

Oxidesed Рс Reduced cyt f

Ion strength - 100 mM, pH=7, εр-ра=80; εбелка =2; 
red -6.5  мВ, blue + 6.5  мВ;
green – atoms of molecules. Dotted lines connect 
residueson Pc and Cytf that were used by simulation for 
calculation the distance between proteins

r1

r2

r4
r3



Reaction between cyt f and different Pc mutants in 
solution

Dependence of Log k from Ion strength
experiment A. Kannt et al.(1996) modeling

0 → -1

-1 → 0

-1 → 0

-1 →+1
-2 → 0

-2 → +1

-3 → +1

k - (М·с)-1, I - М; pH=7 ; r D42-R209 -18 A, r E43-K187 -18 A, r D44-K187 -18 A, r E60-
K58 -25 A, r Cu-Fe – 40A; Р=0.01; dt=100 ps







Пути переноса электрона в условиях стресса‘



Влияние pH на белковые молекулы



Зависимость константы скорости образования 

комплекса Фд-ФНР и Фд-гидрогеназа от pH
Фд-гидрогеназа

Фд-ФНР



Красный -7 мВ, синий + 7 мВ; зеленым показана вторичная структура белка

Эквипотенциальные 
поверхности Фд, ФНР и 
гидрогеназы при pH 6



Красный -7 мВ, синий + 7 мВ; зеленым показана вторичная структура белка

Эквипотенциальные 
поверхности Фд, ФНР и 
гидрогеназы при pH 8



Моделиро-

вание

процессов 

в люмене
тилакоида



Взаимодействие между Рс и cytf

Pc

Pc

Cytf

.
Kovalenko, I.B., Abaturova, A.M., Gromov, P.A., Ustinin, D.M., Grachev, E.A., Riznichenko, G.Y. and 

Rubin, A.B. (2006) Phys. Biol. 3, 121-129 





Фрагмент Тилакоида

Фотосинтетический электронный транспорт. 
Комплексы и подвижные переносчики

люмен50 Å 

Fd/

Fld

строма





cytb6f PSI

e

e

P700e
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Electron transition by Pc molecule from cytochrome complex to PSI















Мезоскопический подход

• Описание процессов внутри комплексов с помощью 
уравнений для вероятностей состояний

• Многочастичная Броуновская Динамика для подвижных 
переносчиков

• Уравнения в частных производных для распространения 
электрохимического потенциала в люмене.



10-11 s

10-6 s

Фотосинтеттическая мембрана зеленых 
растений и водорослей



Initial profile of proton concentration on membrane surface

Simulation of Δ pH creation



Proton concentration in lumen



Концентрация протонов в люмене, синтез АТФ и профиль pHProton concentration in lumen, ATP-formation, 

and pH profile



Гибридная модель Броуновская + 
молекулярная динамика 



Encounter complex simulation by
Brownian Dynamics

Final complex simulation by
Molecular Dynamics

Protein-protein complex formation



Зависимость расстояния (nm) между Cu в молекуле Pc и Fe Cyt f от времени 

Образование комплекса пластоцианина и цитохрома f
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Supercomputer «Lomonosov»
Moscow State University
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