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Типы устойчивости стационарного состояния  

Ляпуно́в Алекса́ндр Миха́йлович (1857 –1918) – 

русский математик, создал теорию устойчивости 

состояний равновесия и движения механических систем 

с конечным числом параметров.  

 

Работал также в области дифференциальных 

уравнений, гидродинамики, теории вероятностей. 
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http://ru.wikipedia.org/wiki/1857
http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0
http://ru.wikipedia.org/wiki/%D0%A3%D1%81%D1%82%D0%BE%D0%B9%D1%87%D0%B8%D0%B2%D0%BE%D1%81%D1%82%D1%8C_%D0%BF%D0%BE_%D0%9B%D1%8F%D0%BF%D1%83%D0%BD%D0%BE%D0%B2%D1%83
http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F
http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F
http://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0
http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9


Определение устойчивости 

• Состояние равновесия 
устойчиво, если для любой 
заданной области отклонений 
от состояния равновесия () 
можно указать область (), 
окружающую состояние 
равновесия и обладающую тем 
свойством, что ни одна 
траектория, которая 
начинается внутри области , 
никогда не достигнет границы .  
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Устойчивость определяется 

действительной частью 

собственного числа λ 

Если числа λ1 λ2 – действительны и отрицательны – устойчивый узел; 

 

Если числа λ1 λ2 – действительны и положительны – неустойчивый узел 

 

Если λ1 λ2 – действительны и разных знаков  – седло 

Если λ1, λ2 – комплексно сопряженные и Re λ1, λ2 <0– устойчивый фокус 

 

Если λ1, λ2 – комплексно сопряженные и Re λ1, λ2 >0– неустойчивый фокус 

 

Если λ1, λ2 – чисто мнимые и Re λ1 λ2 =0 – центр 

xixeix sincos Формула Эйлера 

Если λ1 λ2 – комплексно сопряженные, решение  ищется в виде  titt eeex  ImRe 

Мнимая часть не сказывается на устойчивости 
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Поведение фазовых траекторий 

системы двух линейных ОДУ в 

окрестности стационарного состояния 

при разных значениях 

характеристических чисел   
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Бифуркацонная диаграмма 
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Линеаризация системы 

 общего вида 
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Разложение правой части в ряд Тейлора. 

Линеаризация системы 
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Линеаризованная система 
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Если оба корня характеристического уравнения имеют отрицательную 

действительную часть и, следовательно, все решения уравнений первого 

приближения затухают, то состояние равновесия устойчиво; 

• если хотя бы один корень имеет положительную действительную часть,  

• то есть линеаризованная система имеет нарастающие решения, то состояние равновесия 
неустойчиво. 

 

• Если действительные части обоих корней характеристического уравнения равны нулю или 
если один корень равен нулю, а другой отрицателен, то линеаризованные уравнения не 
дают ответа на вопрос об устойчивости состояния равновесия, и необходимо 
рассматривать члены более высокого порядка малости в разложении в ряд Тейлора 
правых частей уравнений  
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Кинетические уравнения Лотки 

(A.J. Lotka. Elements of Physical 

Biology, 1925) 
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Лотка Альфред Джеймс (англ. Alfred James 

Lotka), 1880 –1949  – американский математик, 

физик, статистик, демограф. Разработал модели 

простейших физико-химических реакций. Изучал 

процесс смены поколений, анализировал процесс 

демографического развития семьи, заложил 

основы экономической демографии 

http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA
http://ru.wikipedia.org/wiki/1880
http://ru.wikipedia.org/wiki/%D0%A1%D0%A8%D0%90
http://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA


Фазовый портрет системы Лотки 

 

а – устойчивый фокус,  

б – устойчивый узел.  
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Модель Вольтерра 

X – численность жертв 

Y – численность хищников 

Vito 

Volterra 

Вольтерра Вито (1860 —1940) — выдающийся итальянский 

математик и физик. Работал в области дифференциальных 

уравнений с частными производными, теории упругости, 

интегральных и интегро-дифференциальных уравнений, 

функционального анализа. Основатель математической 

теории популяций. 
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Фазовый портрет модели 

Вольтерра 

α= 4, = 0.3,  = 0.4, δ=0.4  α =2,  = 0.3,  = 0.4, δ=0.4   
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Volterra predator–prey model 

describing continuous oscillations of 

the population numbers.  

 

(a) phase pattern;  

 

(b) dependence of the numbers  

of predators and preys on time.  
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Кривые численности зайца и рыси в Канаде 

(по К. Вилли, В. Детье, 1974) 



Уравнения Вольтерра с учетом 

самоограничения численности 
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x = 2,  

xy = 18, 

x=1, 

 y = 3,  

yx = 5, 

y=1 

x = 2, 

xy = 1, 

x=1,  

y = 3,  

yx = 1, 

y=1 



Отбор одного из двух равноправных  

 (конкуренция) 
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Дмитрий Сергеевич Чернавский  (1926-2016) 

 

Книги: Синергетика и информатика (2004); 

Ю.М.Романовский, Н.В.Степанова, 

Д.С.Чернавский. Математическая биофизика 

1985, 2004 


