
Анализ устойчивости 

стационарного состояния 

системы двух автономных 

дифференциальных 

уравнений 

Фазовая плоскость 

Качественное исследование 

Г.Ю.Ризниченко 



Траектории системы в 
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Типы устойчивости 

стационарного состояния  

Ляпуно́в Алекса́ндр Миха́йлович (1857 –

1918) – выдающийся русский математик, 

создал теорию устойчивости состояний 

равновесия и движения механических 

систем с конечным числом параметров. 

Работал также  в области  

дифференциальных уравнений, 

гидродинамики, теории вероятностей  
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Определение устойчивости 

• Состояние равновесия 
устойчиво, если для любой 
заданной области отклонений 
от состояния равновесия () 
можно указать область (), 
окружающую состояние 
равновесия и обладающую 
тем свойством, что ни одна 
траектория, которая 
начинается внутри области , 
никогда не достигнет 
границы .  
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Устойчивость определяется 

действительной частью 

собственного числа λ 
Если числа λ1 λ2 – действительны и отрицательны – устойчивый узел; 

 

Если числа λ1 λ2 – действительны и положительны – неустойчивый узел 

 

Если λ1 λ2 – действительны и разных знаков  – седло 

Если λ1, λ2 – комплексно сопряженные и Re λ1, λ2 <0– устойчивый фокус 

 

Если λ1, λ2 – комплексно сопряженные и Re λ1, λ2 >0– неустойчивый фокус 

 

Если λ1, λ2 – чисто мнимые и Re λ1 λ2 =0 – центр 

xixeix sincos Формула Эйлера 

Если λ1 λ2 – комплексно сопряженные, решение  ищется в виде  titt eeex  ImRe 

Мнимая часть не сказывается на устойчивости 
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Поведение фазовых 

траекторий системы двух 

линейных ОДУ в 

окрестности 

стационарного состояния 

при разных значениях 

характеристических чисел   
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Бифуркацонная диаграмма 
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Линеаризация системы 

 общего вида 
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Если оба корня характеристического уравнения имеют 

отрицательную действительную часть и, 

следовательно, все решения уравнений первого 

приближения затухают, то состояние равновесия 

устойчиво; 

• если хотя бы один корень имеет положительную 
действительную часть, то есть линеаризованная 
система имеет нарастающие решения, то состояние 
равновесия неустойчиво. 

 

• Если действительные части обоих корней 
характеристического уравнения равны нулю или если один 
корень равен нулю, а другой отрицателен, то 
линеаризованные уравнения не дают ответа на вопрос об 
устойчивости состояния равновесия, и необходимо 
рассматривать члены более высокого порядка малости в 
разложении в ряд Тейлора правых частей уравнений  
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Кинетические уравнения 

Лотки (A.J. Lotka. Elements of 

Physical Biology, 1925) 
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Лотка Альфред Джеймс (англ. Alfred 

James Lotka), 1880 –1949  – 

американский математик, физик, 

статистик, демограф. Разработал 

модели простейших физико-химических 

реакций. Изучал процесс смены 

поколений, анализировал процесс 

демографического развития семьи, 

заложил основы экономической 

демографии 



Фазовый портрет 

системы Лотки 

а – устойчивый фокус,  

б – устойчивый узел.  
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Модель Вольтерра 
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X – численность жертв 

Y – численность хищников 

Vito Volterra 

Вольтерра Вито (1860 —1940) — выдающийся 

итальянский математик и физик. Работал в 

области дифференциальных уравнений с 

частными производными, теории упругости, 

интегральных и интегро-дифференциальных 

уравнений, функционального анализа. 

Основатель математической теории популяций. 



Фазовый портрет модели 

Вольтерра 

x = 4, xy = 0,3, y = yx = 0,4  x =2, xy = 0,3, y = yx = 0,4  



Volterra predator–prey model 

describing continuous oscillations of 

the population numbers.  

 

(a) phase pattern;  

 

(b) dependence of the numbers  

of predators and preys on time.  
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Кривые численности зайца и рыси в 

Канаде 

(по К. Вилли, В. Детье, 1974) 



Уравнения Вольтерра с учетом 

самоограничения численности 
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x = 2,  

xy = 18, 

x=1, 

 y = 3,  

yx = 5, 

y=1 

x = 2, 

xy = 1, 

x=1,  

y = 3,  

yx = 1, 

y=1 


